Bioengineering of coagulation factor VIII for efficient expression through elimination of a dispensable disulfide loop.

نویسندگان

  • S R Selvaraj
  • A N Scheller
  • H Z Miao
  • R J Kaufman
  • Steven W Pipe
چکیده

BACKGROUND Heterologous expression of factor VIII (FVIII) is about two to three orders of magnitude lower than similarly sized proteins. Bioengineering strategies aimed at different structural and biochemical attributes of FVIII have been successful in enhancing its expression levels. OBJECTIVE Disulfide bonds are vital to the proper folding, secretion and stability of most secretory proteins. In an effort to explore additional targeted bioengineering approaches, the role of disulfide bonds in FVIII secretion and function was probed in this study. METHODS AND RESULTS Single and paired cysteine mutants were generated by substituting with serine or glycine residues and analyzed by transient transfection into COS-1 and CHO cells. Seven of the eight disulfide bonds in FVIII were found to be indispensable for proper secretion and function. However, elimination of the disulfide bond formed by C1899 and C1903 within the conserved A3 domain improved the secretion of FVIII. The addition of the C1899G/C1903G mutations to a previously described FVIII variant, 226/N6, with high secretion efficiency increased its secretion by 2.2-fold. Finally, the addition of the A1-domain mutation, F309S, in conjunction with the disulfide mutation had an additive effect, resulting in a net improvement in secretion of between 35 and 45-fold higher than wild-type FVIII in CHO cells. CONCLUSION Such combined targeted bioengineering strategies may facilitate more efficient production of recombinant FVIII and contribute toward low-cost factor replacement therapy for hemophilia A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells

Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...

متن کامل

Bioengineering of coagulation factor VIII for improved secretion.

Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation. Quantitative or qualitative deficiencies of FVIII result in the inherited bleeding disorder hemophilia A. Expression of FVIII (domain structure A1-A2-B-A3-C1-C2) in heterologous mammalian systems is 2 to 3 orders of magnitude less efficient compared with other proteins of similar size compromising rec...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Bioengineering of coagulation factor VIII for improved secretion

Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation. Quantitative or qualitative deficiencies of FVIII result in the inherited bleeding disorder hemophilia A. Expression of FVIII (domain structure A1-A2-BA3-C1-C2) in heterologous mammalian systems is 2 to 3 orders of magnitude less efficient compared with other proteins of similar size compromising reco...

متن کامل

FACTOR V AND VIII INHIBITOR IN PATIENTS WITH COMBINED FACTOR V AND VIII DEFICIENCY

Patients with coagulation factor(s) deficiency who use coagulation therapy are susceptible to forming inhibitors against coagulation factor(s). In this survey we detected factor V and VIII inhibitor in ten patients with combined deficiency of factors V and VIII from north east of Iran (Khorassan province). It was revealed in our survey that eight patients had both factor V and factor VIII i...

متن کامل

Development of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX

Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of thrombosis and haemostasis : JTH

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2012